Overview of heavy flavour and quarkonia

Preeti Dhankher
on behalf of the ALICE, ATLAS, CMS and LHCb collaborations
University of California, Berkeley

RHIC & AGS Annual Users' Meeting 2020

Probing quark-gluon plasma (QGP) with heavy flavour

Goal: Explore the deconfined phase of QCD matter →quark-gluon plasma

Why heavy flavour?

- $m_Q >> \Lambda_{QCD}$ Their production cross section calculable with pQCD
- $m_Q >> T_{QGP}$ production restricted to initial hard scatterings (formation time 1/2 $m_Q \sim 0.02$ 0.1 fm/c)

Studies from their production to their "journey" into the medium until the formation of heavy-flavour hadrons!

Heavy-flavour production in pp collisions

▶ Precise production measurement in pp down to low p_T (~ 0 with D0).

Comparison with models:

- Data described by pQCD calculations.
- Data is more precise than the model prediction. Need to constrain the model prediction.

Heavy-flavour directed flow v₁

 ALICE: opposite slope w.r.t. RHIC, effect due to larger B than the induced E?

Quarkonium: dissociation and re-generation

arxiv:1905.13669v1

- J/ψ cannot exit inside the medium (colour screening)
- Recombination:
 - J/ ψ created in the QGP by combination of $c\bar{c}$ pairs.
- Low p_T: In most central collision J/ψ is less suppressed at LHC than RHIC→ regeneration balancing the screening in the QGP
- High pT: J/ψ is strongly suppressed at both LHC and RHIC due to color screening.

Quarkonium: dissociation and re-generation

arxiv:1103.6269

modification decreases from forward to central rapidity.

Reflects rapidity dependence of the $c\bar{c}$ cross-section regeneration probability.

Bottomonium suppression

Dissociation:

- Bottomonia cannot exit inside the medium (colour screening).
- Sequential suppression: different radii/binding energies →different suppression

Recombination:

- Bottomonia created in the QGP by combination of $b\bar{b}$ pairs.
- Less affected due to lower $b\bar{b}$ cross section at both RHIC and LHC.
- Strong suppression in PbPb collisions w.r.t to pp collisions.

Bottomonium suppression

CMS: PLB 770, 357 (2017)

- Y (1S): Shows similar suppression at RHIC and LHC.
- Y (2S+3S): Hint of more suppression at LHC than RHIC.

Heavy flavour energy loss

In-medium energy loss as a consequence of radiative and collisional processes.

Energy loss in the medium due to.

- Color charge (Casimir factor): $\Delta E_q < \Delta E_g$
- Dead cone effect (radiative energy loss):
 Reduction of gluon radiation from heavy quarks at small angles. It depends on the mass of the radiator quark.

$$\Delta E_{\rm b} < \Delta E_{\rm c} < \Delta E_{\rm u,d,s,g}$$

Heavy flavour energy loss

In-medium energy loss as a consequence of radiative and collisional processes.

Energy loss in the medium due to.

- Color charge (Casimir factor): $\Delta E_q < \Delta E_g$
- Dead cone effect (radiative energy loss):
 Reduction of gluon radiation from heavy quarks at small angles. It depends on the mass of the radiator quark.

$$\Delta E_{\rm b} < \Delta E_{\rm c} < \Delta E_{\rm u,d,s,g}$$

Hint of flavour dependence of in-medium energy loss

Heavy flavour energy loss

In-medium energy loss as a consequence of radiative and collisional processes.

Hint of flavour dependence of in-medium energy loss

Elliptic flow in heavy-ion collision

PRL 111, 052301 (2013)

- v₂ ~ 0 for Charmonium state unlike charged hadrons.
- Consistent in all centrality bins → Hints charmonium doesn't flow at all.

Elliptic flow in heavy-ion collisions

- Charmonium state exhibit large flow.
- $v_2 \sim 0$ for bottomonium states. Both $\Upsilon(1S)$ and $\Upsilon(2S)$ shows negligible flow.
 - → charm flows but not beauty?

Elliptic flow in heavy-ion collisions

- Charmonium state exhibit large flow.
- $v_2 \sim 0$ for bottomonium states. Both $\Upsilon(1S)$ and $\Upsilon(2S)$ shows negligible flow.
 - → charm flows but not beauty?
- v_2 significantly > 0 for HF muons \leftarrow c.
- v₂ smaller but still >0 for HFmuons ← b.

→ open charm and open beauty both flow

Elliptic flow in heavy-ion collisions

- Charmonium state exhibit large flow.
- $v_2 \sim 0$ for bottomonium states. Both $\Upsilon(1S)$ and $\Upsilon(2S)$ show negligible flow.
 - → charm flows but not beauty?
- v_2 significantly > 0 for HF muons \leftarrow c.
- v₂ smaller but still >0 for HFmuons ← b.

→ open charm and open beauty both flow

Inheriting the flow from the light quark forming the HF hadron?

Elliptic flow in small system

- indicate charm open and bound state positive v₂ also in small system.
- b-hadron flow $v_2 \sim 0$. Is beauty too heavy to flow?

- Λ_c^{+}/D^0 ratio is expected to increase in the presence of charm recombination in the QGP
- Λ_C⁺/D⁰ ratio in PbPb shows moderate enhancement from pp at intermediate pT within uncertainties
 - Hadronization is modified already in pp collisions?

- Λ_c^{+}/D^0 ratio is expected to increase in the presence of charm recombination in the QGP
- Λ_C⁺/D⁰ ratio in PbPb shows moderate enhancement from pp at intermediate pT within uncertainties
 - Hadronization is modified already in pp collisions?

Hadronisation in pp very different than in e⁺e⁻ and depends on multiplicity

- $\stackrel{\mbox{\tiny def}}{\sim} \Lambda_c^+/D^0 \mbox{\sim} \ x10$ larger than in e+e-
- PYTHIA color reconnection tune Mode 2.

Hadronisation in pp very different than in e⁺e⁻ and depends on multiplicity

- $\stackrel{\mbox{\tiny def}}{=} \Lambda_c^+/D^0 \sim x10$ larger than in e⁺e⁻ $\stackrel{\mbox{\tiny def}}{=} \Sigma_c/D^0 \sim x20$ -30 larger than in
- PYTHIA color reconnection tune Mode 2.
- e+e-
- PYTHIA color reconnection tune Mode 2.

Hadronisation in pp very different than in e⁺e⁻ and depends on multiplicity

- PYTHIA color reconnection tune Mode 2.
- e+e-
- PYTHIA color reconnection tune Mode 2.
- $\leq \Xi_c/D^0 \sim x20-30$ larger than in e⁺e⁻
- PYTHIA color reconnection tune Mode 2.

New experimental probe: X(3872) particle

Observed first time by Belle in 2003 ($M_{X(3872)} \sim 2 M_D$)

LHCb-CONF-2019-005

Prompt $N_{X(3872)}$ / $N_{\psi(2S)}$ decreases as a function of multiplicity:

→ loosely bound states destroyed by hadronic interactions?

New experimental probe: X(3872) particle

Observed first time by Belle in 2003 ($M_{X(3872)} \sim 2 M_D$)

Prompt Nx(3872) / N ψ (2S) in PbPb significantly enhanced with respect to pp:

→ sensitive to mechanisms of recombination in the QGP? → more statistics is needed

Summary

- Detailed insight on the QGP in heavy ion system using heavy quark from their production to their "journey" into the medium until the formation of heavy-flavour hadrons.
 - Heavy quark interaction.
 - quarkonia dissociation
 - Energy loss measurement.
 - Flow measurement.
- Heavy flavours used to constraint the properties of the small system
 - insights into the small system collective properties.
 - modification of hadronization mechanisms.

Thank you!

Backup slides

New experimental probe: Double charm

Double Parton Scattering (DPS): two independent scatterings in one pp collisions

→ transverse parton density and correlations

In pA collisions: enhanced DPS cross section due to larger transverse parton density.

General good agreement with Pythia 8

$$\sigma_{
m DPS}^{AB} = rac{\sigma^A \sigma^B}{\sigma_{
m eff}}$$

arxiv:2006.15044

- The assumption of a tetraquark of size 1.3 fm reproduces well the experimental data.
- Extending the CIM to a molecular state via its geometrical cross section predicts a very sharp suppression.
- The coalescence picture predicts a qualitatively different behavior, still in clear contradiction with data

Heavy flavour energy loss: dead cone effect in pp

Energy loss in the medium due to.

- Color charge (Casimir factor): ΔE_q < ΔE_g
- Dead cone effect (radiative energy loss): $\Delta E_b < \Delta E_c < \Delta E_{u,d,s,g}$

Lund plane:

First direct observation using jet iterative declustering and **Lund plane** analysis of jets that contain a soft D⁰ meson

ALI-PREL-339746 ALI-PREL-339786

Charm baryon production in small systems

- Λ_c^+/D^0 significantly higher than expectation from e^+e^- collisions.
- Measurement in pp and pPb is compatible with each other with current uncertainty level.